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I. INTRODUCTION

Desired signal tracking with an adaptive array can be accomplished

two ways. One can either supply a reference signal in the array feed-

back loop, and use the LMS algorithm of Widrow, et al [11, or one can

inject steering weights into the feedback loops, as originally suggested

by Applebaum [21.

In the LMS array[l], the mean-square difference between the array

output signal and a reference signal [3,4,51 (or "desired response"[1])

is minimized by the array feedback. When the reference signal is cor-

related with the desired signal (and uncorrelated with the interference),

the array automatically maintains a strong pattern response in the de-

sired signal direction. Usually the result is a beam that tracks the

desired signal.

However, generating a reference signal for the LMS array can be

a difficult task. Several problems confront the designer. First, there

must be some way to process the array output signal so the desired signal

is preserved and the interference is decorrelated. Second, there is

usually an acquisition problem. The frequency of the incoming desired

signal, and often the timing of a pseudonoise code or other tagging

modulation, are unknown and must be determined before reference signal

generation can begin. Third, it must be possible to start reference

signal generation in the presence of interference and before the array

nulls the desired signal. Finally, generating the reference signal

usually requires a great deal of electronic circuitry behind the array.

Although suitable reference signal generation techniques have been found

for a few types of communication systems (4,51, for many other types

of systems, there simply does not appear to be any way to generate a

reference signal.
1

-Ali



I

The second way to steer the beam in an adaptive array is to in-

sert steering weights into the array feedback loops, as described by

Applebaum[21. This approach is vastly simpler, since no reference sig-

nal is required at all. The only difficulty with this approach is that

the designer must know where to point the beam. He must know the de-

sired signal arrival angle.

When the desired signal arrival angle is unknown, one can still

use the Applebaum array, in the form of a power inversion array[61,

to obtain some interference protection. A power inversion array is

just an Applebaum array with a steering vector that turns one element

on and the rest off. The element turned on is chosen so its element

pattern covers some large sector of space from which desired signals

may arrive. There is no attempt to steer a beam toward the desired

signal.

However, the performance of a power inversion array is much poorer

than that of the Applebaum array with a properly steered beam. For

example, a power inversion array can accommodate only a limited dynamic

range for the desired signal [6]. If the desired signal is too strong,

the array will null it.

Because of the simplicity of the steered beam array, compared to

the LMS array with a reference signal, it is certainly the most desirable

approach if the desired signal arrival angle is known. In many design

situations, the signal angle may be known approximately, but not exactly.

Or, it may be possible to estimate the signal angle[71. For this reason,

it is of interest to determine how well a steered beam array will per-

form when the beam pointing angle is in error. That is the subject

we address here.

2
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In this report, we examine the performance of a two-element steered

heam adaptive array as a function of the beam pointinq error. We in-

clude in our model the effects of desired signal-to-noise ratio, inter-

ference-to-noise ratio, feedback loop gain, signal arrival angles, and

signal bandwidths. We will show several things. First, we will note

that to obtain full gain from the array when the signal power is high,

the beam angle must be extremely close to the correct direction. (This

fact has been pointed out previously by Zahm[81.) Second, we will find

that the pointing error that can be tolerated is essentially a question

of dynamic range; the greater the desired signal dynamic range that

must be accomodated by the array, the smaller the pointing error must

he. Third, we will compare the steered beam array perfomance with that

of a power inversion array and an LMS array. We will find that the

steered beam array performs better than the power inversion array even

with quite large steering errors, but poorer than the LMS array for

any nonzero pointing error. Finally, we will show that with interfer-

ence present, the performance of the two-element array is less sensitive

to pointing errors than without the interference.

In Section II of the report, we define the model for the problem

and formulate the necessary equations. In Section III, we present calcu-

lated results. Section IV contains the conclusions.

3
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It. FORMULATION OF THE PROBLEM

Consider the 2-element adaptive array shown in Figure 1. The

elements are assumed isotropic and a half wavelength apart. The complex

(analytic) signal xi(t) from each element is multiplied by a complex

weight wi and summed to produce the array output s(t). The array weights

are assumed controlled by feedhack loops as described by Applebaum

[?], which are also known as power inversion loops [6]. In such an

array, the steady-state weight vector w = (w w2)T is given by [2,6]

w = [I + k1 -1 W9 (1)

where P is the covariance matrix,

4 = E(X*XT, (2)

and w0 is the steering vector

Two = (wlo,w2 o)T. (3)

In these equations, I is the identity matrix, k is the feedback loop

gain 161, T denotes the transpose, and "*" is complex conjugate. X

is the signal vector

X = (xl~)x()T (4)

and E(.) denotes the expectation.

Suppose two signals are incident on the array, one desired and

one interference. Also, suppose thermal noise is present on each element

signal. Then the element signals are

x.(t) d.(t) + i (t) + n.(t), j 1,2 (5)

4
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I

where dM(t) is the desired signal, iM(t) is the interference, and n (t) is

the noise. The n.(t) are assumed zero-mean, bandlimited gaussian noise

siqnals with

Efni(t) nt(t)l = 12 6 (6)

where 6ij is the Kronecker delta.

We assume the desired signals d1(t) and d2(t) differ only by an

interelement propagation time delay Td, i.e.,

dl(t) = d(t), (7a)

d2(t) = d(t-Td), (7b)

where d(t) is the desired signal waveform and Td is

T = - sin d (8)d c d

with Z the element separation, c the velocity of propagation, and ed

the arrival angle, relative to broadside. Similarly, we assume

T T(t) , (ga)

i2(t) i(t-T i )  (9b)

where T(t) is the interference waveform and

Ti sin Oi , (10)c

with 0i the interference arrival angle. Also, we assume the desired

and interference signals are zero-mean, stationary, and statistically

independent of each other and the thermal noise.

6
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With these assumptions, ttie covariance matrix in [quation ()is

Rd(0) + Rz!O) Rd*(Td) + R*(T1)(1

(P ? + 11 R() R() I( Rd(T d) + R.(T.) () + i))

where R d(r-0 and R.(r) are the autocorrelation functions of d(t) and

R d(T) = Efd(t+T)d*(t)] , (12a)

Ri(T) = E[71(t+T)i*(t)] (12b)

It is convenient to define

S d = R d(O) =desired signal power per element, (13a)

S.i = RimO = interference signal power per element, (13b)

and also the normalized autocorrelations

d d) (14a)

P Ri~(Ti) (14b)

In addition, we define the normalized parameters

K = ka2  normalized loop gain, (15a)

5d
d= - desired signal-to-noise ratio (SNR) per element, (15b)

= Si interference-to-noise ratio (INR) per element. (15c)i 2

7



The matrix I+k4 may then be written

l +K+KF d+KF i  K dpd+Ki ip.

I+k1 = (16)

KFdPd+K Pi  l+K+Kd+K i

The inverse of this is

(+K+KFd+Ki -K dPd-Ki Pi

Il+kf -I1 j (17)

S dI 1+K+Kd +Ki /

where D is the determinant of I+kO:

D = (I+K+K d+K~i) - K dPd+K ip 12  (18)

The steady-state weights in the array may now be determined from Equation

(1) for any given steering vector w0

In this report we assume the steering vector w is chosen to provide

i heam maximum of the quiescent pattern in a given direction 6m x

To determine wo, we note that a CW signal from an angle ma will producemax

a signal vector

X ( I e sinmax jWot (19)

The array output from such a signal would be

T wJ esnmaxeJo

X(t) XT w = W1+w2e ejwot (20)

The array will have a pattern maximum on this signal if

-jsin Oma x
wI = w2 e (21)

I8



Hence, for a given emax, we choose*

W (e"' max 1) (22)

From this wo, the steady-state weight vector w may then be calculated

from Equation (1) using [I+k$] -1 from Equation (17).

To proceed, we must first define the signals a(t) and T(t) so

Pd and pi may be found. We will assume the desired signal and the

interference are each stochastic processes with a flat bandlimited

power spectral density centered at w The desired signal will have

bandwidth Awd, so its autocorrelation function is

d
sin( - ) jWoT

Rd(T) = Sd -AdT e (23)

(2~

Substituting =Td and noting that

Ad Td (24)
2 i- J(ooTd) =  28%

where Bd is the fractional bandwidth,

NoBd= Aw (25)
0

and d is the interelement phase shift for the desired signal,

d w oTd ' (26)

we have

sin I(Bdld) eJ

Pd - e (27)

*In a power inversion array [21, where we have no informatin about
desired signal arrival angle, we instead choose wo=(l 0) . This choice
makes the quiescent pattern omnidirectional.

I9



'nimilarly, if the interference has bandwidth Awi, we define the fractional

bandwidth

B (28) I
and phase shift

j=w oT.i (29)

Then I

sin 7(ii e J i. (30) 4

From w in Equation (1), the array output desired signal power,

interference power and thermal noise power may now be calculated. The

desired signal at the array output is

Pd(t) = [(tj(t-Td)) w. (31) (
The output desired signal power is then

E [ - * (t) sd t)

ISd {W1 2 1w2  + 2Re{wlw2Pd}] (32)

The output interference signal is

= [(t),i(t-Ti)] w (33)

and the output interference power is

P = ~ S wl I + 1w2  + 2Re wW2Pi} (34)

The output thermal noise signal is

Sn(t) = [I (t),n 2 (t)l w . (35)
10]
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I The. output thermal noise power is simply (in view of Equation (6)):

2

Pn 2 [jw1J + fw2J 2 (36)

From Pd' Pi and Pn we may compute the output desired signal-to-

interference-plus-noise ratio (SINR):

SINR - d (37)P.i+Pn

which we use as a measure of array performance in the sequel.

We now have all the equations needed to compute the output SINR

as a function of 0d' Bd9 d' 0i' Bi, i and 0ma x' In the next section

we give the results of such calculations and show what happens to array

performance when 0max ed -

III. RESULTS

Our purpose is to learn how well the array performs when ema'

the beam pointing angle, is not equal to 0d' the desired signal arrival

angle. Consider first the case where there is no interference (pi=O).

Figure 2 shows the output SINR from the array as a function of emax

when Od=O ° . Several curves are shown for different SNRs (input desired

signal-to-noise ratios). The curves are computed for K=O.l and Bd=0.

(Bd is found to have no effect on the results. The choice of K will

be discussed below.)

From these curves, we see that the higher the SNR, the closer

ema x must be to 
0d to achieve maximum gain from the array. For example,

if SNR=O dB, the array provides better than 0 dB gain (i.e., SINR O>dB)

as long as -27°<0 <270, but for SNR=20 dB, the array gain exceedsI max

] 11

, I



-CPEAK z43 FOR SNR =40
40-

'4-PEAK=33 FOR SNR = 30
30-

-4-PEAK =23 FOR SNR= 20

z2 0
U,

I0

03

Figure 2. dBR s
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0 0,K=.1, Bd=0.
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0 dB (SINR>20 dB) only if -2<Ka <20.* Of course, for most system

designs, achieving maximum gain is not the most important question.

What matters is achieving a given minimum SINR at the array output.

However, the trend is the same. For example, if SNR=IO dB, we require

-3 0 < max<390 to achieve SINR>O dB. But for SNR=30 dB, -8.80< max<8.8°

is necessary for SINR>O dB.

The behavior of the curves in Figure 2 may be understood by examining

the array patterns. Figures 3 and 4 show some typical patterns under

the same conditions as in Figure 2. In Figure 3, 0max is 00 and in

Figure 4, 0max is 100. For Omax=O0 , we find that as the SNR increases,

the overall pattern magnitude is reduced. The array does not try to

null the desired signal. As the pattern amplitude drops, both the desired

signal power and the thermal noise power drop in proportion. Hence

the output SINR remains unaffected by this change in pattern amplitude.

For max=100, however, the pattern behavior is quite different.

Now as the SNR increases, the array increasingly nulls the desired signal.

Since it can do this without lowering the overall pattern amplitude,

the result is to reduce the desired signal power without reducing the

thermal noise power. Hence, the SINR drops as the SNR increases. This

accounts for the behavior seen in Figure 2.

In general, we find that the closer 8max is to the desired signal

direction 8 d9 the stronger the desired signal power must be to move

the null on to the desired signal.

*This sharp dependence of $INR on pointing error has been noted previously
by Zahm [8], who showed similar results for a four-element linear array.

13
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0 -20 -40 -60
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Figure 3. Array pattern.

K=O.1I, e 0 B maxO
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DESIRED
jSIGNAL emox

0 -20 -40 -60
(d B)

Figure 4. Array pattern.

K=0.1, B d= , 0max= 10

No interference.
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A different perspective on these results may be gained by plotting

the SINR versus the SNR. This is done for several values of 0 inmax

Figure 5. This figure is interesting because it immediately shows that

the beam pointing that can be tolerated is essentially a matter of dynamic

range. For example, if e max10 0, we have SINR>O dB only for -3 dB<SNR<29

dB, whereas if e =10, SINR>O dB for - 3 dB<SNR<49 dB. The greatermax

the desired signal dynamic range we wish to accomodate, the closer 0max

must be to the desired signal angle.

Also shown in Figure 5 is the performance achieved by a power in-

version array, with wo 
= (1 ,0 )T, under the same conditions*. It turns

out that the power inversion array has the same performance as the steered

beam array with 0 =30o . The performance of the steered beam array
m~x

is thus seen to exceed that of the power inversion array as long as

0 0-30 <0 max<30

We note also that an LMS array, using a replica of the desired

signal as the reference signal, has essentially the same performance

as the curve shown for 0max = 00 in Figure 5.** Thus, the performance

*The calculation of SINR for the power inversion arra) is carried out

in Reference 6.

**For the LMS array, the steady-state weights are w = 4-1s, where

S=E{XR(t)}, with R(t) the reference signal, and € is the covariance
matrix in Equation (2) [1]. When R(t) is correlated with the desired
signal, S is a vector paralle to w = (1 ,l), i.e., the same as the
steering vector with e = 0 . Hece the only difference between the
LMS weights and those Md here is due to the I term in Equation (1).
This term makes a negligible difference on the output SINR computed
in Figure 5.

16
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of the steered beam array approaches that of the LMS array as the pointing

error goes to zero.

The previous curves were all for a loop gain of K=O.1. The effect

of loop gain on these results is illustrated in Figure 6, which shows

typical curves of SINR versus K, for SNR=30 dB and for several emax.

It is seen that as K increases, the array tends to null the desired

signal more. The smaller the pointing error max' the larger K must

be to null the desired signal to a given level. In the other curves

presented in this paper, we have used K=O.l as a representative value.

Now consider the situation when interference is present. Figure

7 shows a set of curves similar to those in Figure 2 except that inter-

ference is incident at ei=500 with an INR of 40 dB and zero bandwidth

(Bi=0). These curves differ from those in Figure 2 in several respects.

First, for SNR<l0 dB, 0ma x has less effect on the SINR (except for

0max near Oi) than it did with no interference. Second, for higher

SNRs the SINR again becomes sensitive to 0max, but much less so than

without interference. For example, in Figure 7, with SNR = 40 dB,

0 0SINR>O dB for -38°<emax <22.5 , whereas in Figure 2, SNR = 40 dB yields

SINR>O dB only for -2.9<0 max<2.90. The reason for this difference

is that, with interference present, the single degree of freedom in

the array pattern is used to form the interference null. The array

cannot null the desired signal, as it could without the interference.

Finally, with interference present, the output SINR drops precipitously

for all SNR's as 0max approaches 6 i" Without interference, there is

no such critical angle.

18
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I

FiuIjre 2 shows the corresponding pattern behavior. For SNR=O dR

'nd 0 0 , the array nulls the interference, as shown. We note that

because the array can form only one null, it cannot null both the desired

ard interference signals. Hence, as the desired signal power is increased,

the array responds by reducing the absolute magnitude of the pattern.

This behavior may be seen in Figure 8 by comparing the patterns for

SNR = 0 dB and SNR = 20 dB, for 0max = 00.

The effect of shifting Smax toward ei may also be seen in Figure

8 for SNR = 20 dB. Since INR>SNR, the null remains on the interference.

As a result, the more 6ma x differs from 
8d, the more the pattern magnitude

is reduced.

Figure 9 shows the output SINR versus the input SNR, for several

values of amax* Also, Figure 9 shows the effect of Bi, the interference

bandwidth. Again, we may compare the performance of the steered beam

adaptive array with both the power inversion array and the LMS array.

(The LMS array performance is the same as that shown for m = 0.)

As was the case without interference, for small SNR, a can be farmax

from 6d (00) without degrading performance. As the SNR is increased,

however, Smax must be closer and closer to ed to yield the performance

of the LMS array. At high SNR's extremely accurate knowledge of ed

will be needed to achieve top performance. If we compare the steered

beam results with thcze for the power inversion array, we find that

the SINR exceeds that of the power inversion array as long as 0 max<22.50

i.e., as long as 6max is closer to 0d than 0i . Again, our knowledgP

of 0d does not need to be very accurate to improve on power inversion.

21
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The effect of reducing the angle between 0d and 0. may be seen

in Figures 10 and 11. Figure 10 shows SINR versus SNR for 0. 300

i0

and Figure 11 shows similar results for 0.= 10. In both cases we

find that we must have Omax < 1 for the system to perform as well as

a power inversion array.

The effect of the INR on these results may be seen in Figures 12

and 13. These plots show the output SINR versus input SNR with INR=O

dB and 20 dB, respectively, and Oi = 500. For INR = 20 dB (Figure 13),

we still find (as at higher INR's) that the performance will exceed
6.

that uf the power inversion array as long as Omax < 2 . But for INR

= 0 dB (Figure 12), the performance is returning to that shown in Figure

5 for no interference.

Iv. CONCLUSIONS

We have examined the performance of a 2-element steered beam adaptive

array as a ilnction of beam pointing error, and have compared this per-

formance with that of an LMS array and a power inversion array. The

results show that:

(1) Without interference, the steered beam array performance exceeds

that of the power inversion array as long as the pointing

error is less than 300.

(2) With interference, the steered beam array performance exceeds

that of the power inversion array as long as the beam pointing

angle is closer to the desired signal than the interference.

II.
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(3) For any given beam pointing error, the performance of the

steered beam, LMS and power inversion arrays is essentially

the same for low SNR (input desired signal-to-noise ratio).

But for high SNR, the steered beam array performance is sub-

stantially poorer than that of the LMS array unless the beam

pointing angle is extremely accurate. The accuracy required

depends on the interference power and arrival angle, as shown

in Figures 2-13. For example, Figure 9 shows that for INR

-40 dB, ei =50, B = O, and SNR = 40 dB, the pointing error

must be less than about 0.10 for the steered beam array to

do as well as the LMS array.
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